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In a recent paper [1] C- eribas-i and Altay have presented a detailed study for the free vibration of super elliptical plates
with constant and variable thickness, which is based on the Ritz method with two sets of trial functions. The discussers
welcome their valuable contribution to the vibration analysis of super elliptical plates.

The intention of this discussion is to provide some remarks and corrections on the matter.
As it is known, the shape of the plate in the x–y plane can be defined by the super elliptical function as
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where the maximum dimensions of the plate are 2a and 2b in the x and y directions, respectively. The coefficient n is the
power of the super ellipse and the limiting cases of super elliptical shapes are an ellipse when n=1 and for larger values of
n, the curve gets gradually more rectangular shapes, until for n-1 the curve takes up a rectangular shape.

In their study, C- eribas-i and Altay have calculated the perimeters and areas of different super ellipses, and they are
presented in their Table 2 [1]. They wrote in their work: ‘‘Any deviation from the area of the super ellipse causes extra error
in the results. Calculating the area and perimeter of the region may give an idea about the convergence of the integration’’.

The discussers have found that some differences appeared in those basic results when they recalculated the perimeters
and areas of the same geometries. The perimeters calculated by C- eribas-i and Altay have slight differences with the
recalculated values, but the differences are more important for the recalculated areas of the super elliptical plates. To be
sure about the good precision of their values, the discussers also obtained the areas and perimeters using a finite element
code [2]. For example for n=2 the difference in the area is about 6%: 3.7081 (discussers’) vs. 3.4961 [1].

The frequency coefficients calculated by C- eribasi and Altay also differ from results published by Wang et al. [3]. Wang and
his co-workers had presented an excellent piece of work about buckling and vibration for super elliptical plates in 1994.
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Table 1
Comparison of the fundamental frequency coefficients for simply supported super elliptical plates. O1=o1b2(rh/D)1/2, v=0.30.

a/b

1 1.5 2 3

n=1 Present study 4.935 3.681 3.303 3.009

Wang et al. [3] 4.935 3.681 3.303 3.009

C- eribas-i-Altay [1] 4.935 3.687 3.314 3.035

n=2 Present study 4.633 3.399 3.005 2.740

Wang et al. [3] 4.634 3.400 3.005 2.740

C- eribas-i-Altay [1] 4.736 – 3.108 2.836

n=4 Present study 4.803 3.486 3.037 2.723

Wang et al. [3] 4.804a 3.486a 3.038a 2.723a

C- eribas-i-Altay [1] – – – –

n=8 Present study 4.894 3.540 3.069 2.735

Wang et al. [3] – – – –

C- eribas-i-Altay [1] 5.066 3.775 3.150 2.783

n=10 Present study 4.908 3.548 3.074 2.737

Wang et al. [3] 4.910 3.550 3.076 2.738

C- eribas-i-Altay [1] 5.181 – 3.216 2.826

n-1 Present study 4.9348 3.5640 3.0843 2.7416

Rectangular Leissa[4] 4.9348 3.5640 3.0843 2.7416

a These Wang’s coefficients correspond to n=4 and not to n=8.

Table 2
Natural frequency coefficients Oi=oib

2(rh/D)1/2 for super elliptical plates. v=0.30; n=8, 10.

Present results [1]

n O1 O2 O3 O4 O5 O6 l2
1 l2

2 l2
3

Simply supported
a/b=1 8 4.895 12.278 12.278 19.605 24.560 24.674 5.0655 14.7932 28.6231

10 4.908 12.297 12.297 19.647 24.593 24.675 5.1810 15.4828 30.2322

4.910 12.303 12.303 19.653 24.595 24.679 [3]

a/b=1.2 8 4.148 9.267 11.540 16.614 17.833 23.882 4.2904 11.1921 21.9421

10 4.159 9.284 11.554 16.648 17.850 23.893 4.3883 11.6943 23.5105

a/b=2 8 3.074 4.911 7.990 10.476 12.304 12.306 3.2158 5.9419 11.3608

10 3.074 4.911 7.990 10.476 12.304 12.306 3.2158 5.9419 11.3608

3.076 4.916 7.991 10.480 12.308 12.339 [3]

a/b=3 8 2.735 3.544 4.906 6.822 9.293 10.139 2.7832 3.9315 6.5759

10 2.737 3.551 4.916 6.831 9.303 10.140 2.8259 4.0779 7.0114

2.738 3.556 4.919 6.863 9.355 10.143 [3]

Clamped
a/b=1 8 8.997 18.349 18.349 27.059 32.896 33.056 9.3005 26.7632 44.5642

10 8.997 18.349 18.349 27.057 32.897 33.054 9.3763 27.6621 48.4207

8.986 18.343 18.345 27.048 32.829 32.975 [3]

a/b=1.2 8 7.689 13.903 17.303 23.032 23.917 32.038 7.9395 19.2351 34.4356

10 7.689 13.902 17.303 23.030 23.917 32.038 8.0022 20.8522 38.0785

a/b=2 8 6.145 7.958 11.195 15.837 15.997 17.773 6.2766 7.0101 11.3081

10 6.145 7.957 11.195 15.836 15.997 17.772 6.3068 10.2140 19.1815

6.138 7.956 11.185 15.880 15.993 17.769 [3]

a/b=3 8 5.799 6.466 7.688 9.528 12.005 15.099 5.8716 7.0101 11.3081

10 5.799 6.465 7.687 9.526 12.004 15.101 5.8826 7.1564 12.3145

5.793 6.465 7.684 9.555 12.075 15.653 [3]

In italics Wang’s results [3].
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The authors state that Wang and his co-workers neglected the effect of Poisson’s ratio. On the basis of this wrong
consideration they explained part of their differences with Wang’s results, which are shown in Table 4 of Ref. [1].
In Table 1, the discussers present results of simply supported super elliptical plates, which verify that Wang’s results have
taken into account the Poisson’s ratio, v=0.30. The recalculated values are in excellent agreement with Wang’s results [3].

Apart from the matter of the Poisson’s ratio, a misunderstanding happened when the authors tried to compare their
results with published ones in their Table 4 [1]. They have supposed that Wang’s frequency coefficients 4.804, 3.486, 3.038
and 2.723, correspond to n=8 (marked with a in Table 1) when they really correspond to n=4.

Table 1 shows that there are no differences between C- eribas-i and Altay elliptical plates’ results and the discussers’
results for n=1, but differences appear for super elliptical ones, this means when n adopts values bigger than 1
(for example 2, 4, 8 or 10). On the other hand, as it might be expected, the discussers’ results converge for n-1 to the
frequency factors of a rectangular plate [4].

The discussers present the natural frequency coefficients for simply supported and clamped super elliptical plates with
uniform thickness, for the first six modes; they were determined for various aspect ratios 1ra=br3 and n=8, 10; (see Table 2,
v=0.30). Those results were obtained by an approximate solution of the problem using the same method as C- eribas-i and Altay,
the Ritz method, with an approximation for the transverse displacement amplitude W defined as a summation of functions,
which were adopted as monomials functions selected from a set of monomials [5], of the form xq�p � yp

Waðx,yÞ ¼
XN
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Cifiðx,yÞ ¼
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(2)

which, b=1, obviously, satisfies the boundary conditions at the simply supported edge and b=2, at the clamped edge. In this
case the approximation, Eq. (2), was generated using a complete set of monomials of 136 terms (N=136).

The calculations have been performed for simply supported and clamped super elliptical plates with aspect ratio a/b=1,
1.2, 2, 3; with n=8 and n=10.

Table 2 shows that discussers’ results for the first six frequencies are in excellent agreement with previous published
results [3]. In the same Table, it can be seen that C- eribas-i and Altay’s results do not have good precision for super elliptical
plates (n=8 and n=10); a reason could be that they tested convergence for only some particular cases, circular and elliptical
plates (n=1), and this was not enough to guarantee the convergence for the super elliptical plates�coefficients n=8 and 10.
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